Nickel(0)-Mediated Sequential Addition of Carbon Dioxide and Aryl Aldehydes into Terminal Allenes

Masanori Takimoto, Mitsunobu Kawamura, and Miwako Mori*

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

mori@pharm.hokudai.ac.jp

Received March 19, 2003

ABSTRACT

Nickel-mediated sequential addition of carbon dioxide and aryl aldehydes into terminal allenes is reported. The reaction proceeded in a diastereoselective manner to afford α -methylene- γ -hydroxy carboxylic acids, which allowed stereoselective preparation of cis- β , γ -disubstituted α -methylene- γ -lactones.

Carbon dioxide (CO₂) is regarded as an important natural carbon resource because of its abundant reserve and low degree of toxicity. However, the low reactivity of CO₂ has restricted the range of utility in synthetic organic chemistry. One of the potential methods for overcoming such difficulties in using CO₂ for organic synthesis may be employment of nickel complexes because they exhibit high levels of activity for coupling of CO₂ and various unsaturated hydrocarbons.^{1,2} In the course of our study,³ we found that various allenes reacted with CO₂ and a zerovalent nickel complex to form a nucleophilic nickel complex that could react with aryl aldehydes in a highly stereoselective manner. We report here this nickel-mediated sequential coupling reaction and its application to stereoselective synthesis of β , γ -disubstituted α -methylene- γ -lactones.

Our initial idea is presented in Scheme 1. According to the previous reports,⁴ terminal allene **1** is expected to provide

ORGANIC LETTERS

2003 Vol. 5, No. 15

2599-2601

oxanickelacycle **IIa** and/or **IIb** by oxidative cycloaddition of **1** and CO_2 to a zerovalent nickel complex. It was thought that nickelacycles **IIa** and **IIb** might be in equilibrium with

Reviews: (a) Behr, A. Angew. Chem., Int. Ed. Engl. 1988, 27, 661.
Braunstein, P.; Matt, D.; Nobel, D. Chem. Rev. 1988, 88, 747. (c) Leitner,
W. Coord. Chem. Rev. 1996, 153, 257. (d) Yin, X.; Moss, J. R. Coord. Chem. Rev. 1999, 181, 27. (e) Walther, D.; Ruben, M.; Rau, S. Coord. Chem. Rev. 1999, 182, 67.

⁽²⁾ Recent reports: (a) Saito, S.; Nakagawa, S.; Koizumi, T.; Hirayama, K.; Yamamoto, Y. J. Org. Chem. **1998**, 64, 3975. (b) Louie, J.; Gibby, J. E.; Farnworth, M. V.; Tekavec, T. N. J. Am. Chem. Soc. **2002**, 124, 15188. See also ref 4 and references therein.

^{(3) (}a) Takimoto, M.; Mori, M. J. Am. Chem. Soc. **2001**, *123*, 2895. (b) Takimoto, M.; Shimizu, K.; Mori, M. Org. Lett. **2001**, *3*, 3345. (c) Takimoto, M.; Mori, M. J. Am. Chem. Soc. **2002**, *124*, 10008.

 π -allylnickel complex **III**. Generally, π -allylnickel complexes have a nucleophilic nature.⁶ Thus, it appears that oxanick-elacycles **II** could react with electrophiles (E⁺) to afford carboxylic acid **2** and/or **3**.

Our investigation started with screening of ligands that could mediate the oxidative cycloaddition under mild conditions in a short reaction time. Various ligands (amines and phosphines) were examined, and it was found that only 1,8diazabicyclo-[5.4.0]undec-7-ene (DBU) could mediate the desired process effectively.^{2a,3a-b,7} In the presence of DBU (2 equiv with respect to nickel), terminal allene **1a** (1 equiv) easily reacted with CO₂ (1 atm) and Ni(cod)₂ (1 equiv) in THF under mild conditions (0 °C, 2 h) to afford carboxylic acid **4a** in 59% yield after hydrolysis (Scheme 2). Treatment

Scheme 2. N	ickel-Mediated Add	lition of CO_2 into $1a$
BnO C	1) Ni(cod) ₂ (1 equiv) DBU (2 equiv) THF, 0 °C, 2 h	
CO ₂ (1atm)	2) HCl aq. or DCl/D ₂ O 3) CH ₂ N ₂ (after workup)	4a: 59% 4a-D: 39%

of the above-mentioned reaction mixture with DCl/D_2O afforded **4a-D**. These results suggested that the expected nickelacycle intermediates should be formed.

Reactivity of the generated oxanickelacycle was first examined by choosing benzaldehyde **5a** as an electrophile. After a reaction of **1a** with CO₂ was carried out under similar conditions, **5a** was added to the resulting solution and the mixture was stirred at room temperature for 6 h. Hydrolysis of the reaction mixture followed by treatment of the crude product with diazomethane afforded γ -hydroxy carboxylic acid methyl ester **6a** in 47% yield from **1a** (Scheme 3). Ester **6a** was readily converted to α -methylene-

 γ -lactone **7a** in quantitative yield by treatment with NaH. From the results of NOE experiments for **7a**, the stereochemistries of **7a** and **6a** were determined as shown in Scheme 3.

The overall yield of **7a** was improved when acid-catalyzed lactonization was carried out without isolation of

Table	1. Add	ition of CO ₂ and 1) Ni(cod) ₂ (1 e	d Various A quiv)	ldehydes into 1a
1a	+ CO ₂ (1 atm)	DBU (2 equiv THF, 0 °C, 2	/) h	
		2) ArCHO (2 eo rt, 6 h (in on 3) PPTS, benz	∣uiv) ie-pot) ene, reflux	BnO 7
	entry	ArCHO	Product	yield
	1	5a	7a	60%
	2 N	1еО ₂ С-СНО 5b	7b	66%
	3	F ₃ C-СНО 5с	7c	62%
	4	FСно 5d	7d	57%
	5	Ме-СНО 5е	7e	56%
	6	MeO-CHO 5f	7f	46%
	7	сно 5g F ₃ C	7g	63%
	8	5 h	7h	61%

6a; after the sequential reaction of **1a** with CO_2 and **5a**, the crude carboxylic acid was heated in benzene in the presence of a catalytic amount of PPTS with azeotropic removal of water to provide **7a** in 60% yield from **1a** (Table 1, entry 1).

Various aryl aldehydes were examined for lactone synthesis from **1a** using this procedure. The results were summarized in Table 1 (entries 2-8). In each case, the desired lactone was obtained as a single diastereomer.⁸ The yields were generally good except in the case of aldehyde **5f**, having an electron-donating substituent at the para position (entry 6).

^{(4) (}a) Hoberg, H.; Oster, B. W. J. Organomet. Chem. **1984**, 266, 321. (b) Dérien, S.; Clinet, J.-C.; Duñach, E.; Périchon, J. Synlett **1990**, 361. For metal-catalyzed cooligomerization of allenes with CO₂, see ref 5.

^{(5) (}a) Döhring, A.; Jolly, P. W. *Tetrahedron Lett.* **1980**, *21*, 3021. (b) Aresta, M.; Quaranta, E. C₁ Mol. Chem. **1985**, *1*, 283. (c) Sasaki, Y. J. Mol. Catal. **1989**, *54*, L9. (d) Tsuda, T.; Yamamoto, T.; Saegusa, T. J. Organomet. Chem. **1992**, *429*, C46.

⁽⁶⁾ Reviews: (a) Semmelhack, M. F. Org. React. **1972**, *19*, 115. (b) Billington, D. C. Chem. Soc. Rev. **1985**, *14*, 93. (c) Krysan, D. J. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Elsevier Science, Ltd.: Oxford, UK, 1995; Vol. 12, p 978.

^{(7) (}a) Hoberg, H.; Peres, Y.; Milchereit, A. J. Organomet. Chem. **1986**, 307, C38. (b) Hoberg, H.; Peres, Y.; Milchereit, A. J. Organomet. Chem. **1986**, 307, C41. (c) Hoberg, H.; Peres, Y.; Krüger, C.: Tsay, Y.-H. Angew. Chem., Int. Ed. Engl. **1987**, 26, 771.

A variety of terminal allenes were next examined for lactone synthesis using aldehyde **5a** (Table 2). Elongation

of a tether of allene **1a** did not affect the yield (entry 1), and the reaction of **1b** provided lactone **8** in 58% yield. Simple terminal allenes **1c** and **1d**, which had no heteroatom in the tethers, afforded the desired products in good yields (entries 2 and 3). Terminal allenes that had nitrogen substituents were also applicable. The use of allene **1e** and **1f** for the reaction gave lactones **11** and **12**, respectively, in good yields (entry 4).

In summary, nickel-mediated sequential addition of CO_2 and aryl aldehydes into terminal allenes was developed. The reaction proceeds under mild conditions in a highly regioand stereoselective manner and provides a novel method for synthesis of α -methylene- γ -lactones. Further studies on expansion of the scope of this process and on the reaction mechanism are now in progress.

Acknowledgment. This work was supported by a Grantin-Aid for Scientific Research (No. 12771345) from the Japan Society for the Promotion of Science (JSPS).

Supporting Information Available: Information on experimental procedures and compound characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

OL034480L

⁽⁸⁾ Use of aliphatic aldehydes did not afford good results. When 1-butanal was used in the reaction of **1a**, the desired α -methylene- γ -lactones were obtained in 35% yield as a mixture of stereoisomers at the γ -position of the lactone ring along with the carboxylic acid corresponding to ester **4a** in 45% yield.